Mixed Eccentricity Fault Diagnosis in Salient-pole Synchronous Generator Using Modified Winding Function Method
نویسندگان
چکیده
In this paper, winding function method (WFM), applied to a faulted synchronous generator, is modified and is used for online diagnosis of mixed eccentricity fault. For the first time, the static and mixed eccentricities are modeled in synchronous generators. A modified winding function (MWF) method introduced here is more precise compared with previous methods. This MWF enables to compute the air gap magnetic permeance accurately. Here, two or three terms of the infinity permeance series have not been used, but a closed form equation is employed for permeance evaluation. This leads to a very precise computation of the inductances of the faulted machine. Self inductances of the stator and rotor, mutual inductance of two stator phases and the mutual inductance of rotor and stator are obtained. Meanwhile, it is shown that static, dynamic and mixed eccentricities lead to the increase of the amplitude and occurrence of the distortion in the aforementioned inductances. Since calculation of inductances is the most important step for fault diagnosis of the machine, the proposed method improves the on-line diagnosis of the fault. Meanwhile, the spectrum analysis of stator current, obtained from experimental results, is illustrated.
منابع مشابه
Analysis of Magnetic Flux Linkage Distribution in Salient-Pole Synchronous Generator with Different Kinds of Inter-Turn Winding Faults
A reliable and accurate diagnosis of inter-turn short circuit faults is a challenging problem in the area of fault diagnosis of electrical machines. The purpose of this challenge is to be more efficient in fault detection and to provide a reliable method with low-cost sensors and simple numerical algorithms which not only detect the occurrence of the fault, but also locate its position in the w...
متن کاملEccentricity Fault Diagnosis Studying for a Round Rotor Synchronous Machine
The paper presents a mathematical base modeling combined to Modified-Winding -Function-Approach (MWFA) for eccentricity fault detection of a round-rotor synchronous machine. For this aim, a 6-pole machine is considered, and the machine inductances are computed by MWFA in healthy and also under eccentricity fault. A numerical discrete-time method has been proposed to machine modeling in voltage-...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کاملPattern Classification based Intelligent Numerical Protection of Salient - pole Synchronous Generator using Neural Networks
This paper presents the application of neural networks for the non-differential protection of salient-pole synchronous generator against internal faults in any winding of the stator. The direct phase quantities and modified winding function approach has been used to simulate different types of internal and external faults using electrical parameters of generators installed by utilities. The cas...
متن کاملInternal Fault Detection, Location, and Classification in Stator Winding of the Synchronous Generators Based on the Terminal Voltage Waveform
In this paper, a novel method is presented for detection and classification of the faultyphase/region in the stator winding of synchronous generators on the basis of the resulting harmoniccomponents that appear in the terminal voltage waveforms. Analytical results obtained through DecisionTree (DT) show that the internal faults are not only detectable but also they can be classified andthe rela...
متن کامل